
Considerations on Automath in Light of the Grundlagen

Ferruccio Guidi

University of Bologna, Italy

ferruccio.guidi@unibo.it

May 26, 2016



1. Overview

• The Automath-related formal systems have a rich set of features,

some of which have been largely neglected in subsequent type theory.

• In particular, we want to focus our attention on the next features:

1. the unified binder;

2. the extended applicability condition;

3. the Π-reduction;

4. the weak correctness.

• Landau’s Grundlagen formalized in Aut-QE is the foremost product

meant to testify the usability and convenience of Automath systems.

• And yet, we do not see in the Grundlagen convincing applications of

these features, strongly put forward by the Automath tradition.

• CC has none of them, but accepts an easily translated Grundlagen.
1 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



2. The unified binder demystified - Taxonomy

• “Binder” ⇒ A typed abstraction (♭xV ) capable of β-like reductions.

x is the variable on which we abstract, and V is its expected type.

• “Unified” ⇒ Unification may occur at three levels:

1. unification in the concrete syntax

(i.e., unified binders are disambiguated before entering the kernel);

2. unification in the abstract syntax

(i.e., the kernel receives unified binders and disambiguates them);

3. unification in the semantics

(i.e., the kernel does not disambiguate the binders).

• The Automath languages use (♭xV ) to denote several binders with

distinct semantics , i.e., (λ∞x V ) and (λ3xV ) : (λxV ) : (ΠxV ) : (Π0
xV ).

• The binder (Π0
xV ) is capable of ζ-like reductions: (Π0

xV )⋆ →υ ⋆.

2 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



3. The unified binder demystified - Applications

• De Bruijn pursues unification in the abstract syntax and semantics.

1. Unification in the abstract syntax, expressive power of λ→: OK.

Aut-68: different rules for (♭xV )M according to the degree of M .

2. Unification in the semantics, expressive power of λ→: OK.

Uniform rules for (♭xV )M : Aut-QE-NTI, System Λ, λλ, Λ∞, ∆Λ, λλ.

3. Unification in the semantics, more expressive power: KO.

Some desired property is weakened or fails: Aut-QE, ♭-Cube.

4. Unification in the abstract syntax, more expressive power: KO?

• We explain in formal terms the KO of choice 3 as follows:

1. with (Π0
xV ): (λxV ) ≡ (Π0

xV ) ⇒ (N )(λxV ) ≡ (N )(Π0
xV )

the critical βυ-pair is not confluent (no Church-Rosser);

2. without (Π0
xV ): (λxV ) ≡ (ΠxV ) ⇒ (ΠxV ) ≡ ⋆ (no unique types).

3 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



4. The unified binder demystified - Considerations

1. A slogan: “In Automath, one binder is enough”.

• The working systems featuring one binder in the abstract syntax

have the power of λ→, which is too low for real large-scale applications.

2. A slogan: “In Automath, Π ≡ λ”.

• This is true only in Aut-68, in other cases Π is not present (2. prev.

page), Π 6≡ λ (Aut-Π), or the systems work badly (3. prev. page).

3. Π ≡ λ in Aut-QE yields (∀xV )M ≡ (λxV )M in the Grundlagen.

• Identifying a predicate with its universal quantification avoids a

handful of ∀-introductions at the cost of generating logical confusion.

• The situation is very clear in the line named all"l", where the

∀-introduction rule is defined simply as the projection σ, p 7→ p.

@[sigma:’type’][p:[x:sigma]’prop’]all:=p:’prop’

4 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



5. The extended applicability condition - Example

• The “applicability condition” is the condition on the terms M and N

ensuring that M applied to N , displayed (N )M , is valid or correct.

1. In a PTS: if N : V and M : (ΠxV )T , then (N )M is correct.

2. In Aut-QE: if N : V and M :n (♭xV )T , then (N )M is correct.

• In the extended applicability (2.), the symbol :n denotes typing

iterated n times, with 0 ≤ n < ∞. If n = 0, M reduces to (♭xV )T .

• The only instance of (2.) with n 6= 1 occurs in the next lines of the

Grundlagen, where ande2"l"(a,b,a1) : b : [x:a]’prop’. So n = 2.

@[a:’prop’][b:’prop’][a1:and(a,b)]

ande2"l":=...:b

a@[b:[x:a]’prop’][a1:and(a,b)]

ande2:=<ande1(...)>ande2"l"(a,b,a1):<ande1(...)>b
5 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



6. The extended applicability condition - Considerations

1. The example is not convincing: the extended applicability condition

with n > 1 is useless in systems with three levels of terms, like Aut-QE.

• In fact we can remove it by replacing b with [x:a]b in four places;

from the logical standpoint we are adding four missing ∀-introductions.

2. To us, extended applicability may help in two contexts: when n = 0

(Π-reduction), or when n > 1 in systems with many levels of terms.

• We do not know of any mathematics formalized in these contexts.

3. The literature about Λ∞ and λδ-2 shows that the theory of a system

supporting the extended applicability condition is not trivial at all.

• A mutual dependence arises between 1-step subject reduction and

k-steps subject reduction, which involves other properties as well.

• This is solved by using a simultaneous induction on three axes.

6 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



7. The use of Π-reduction - Considerations

• When Π-reduction is in effect, we assign to the term (N )(ΠxV )T

the meaning of [N/x]T , and state that (N )(ΠxV )T reduces to [N/x]T .

1. In a PTS, Π-reduction allows to remove substitution from the

inferred type of (N )M , i.e., if M : (ΠxV )T then (N )M : (N )(ΠxV )T .

• Canonical type synthesis becomes syntax oriented and is decoupled

from the reduction machinery, which is responsible for substitution.

• Environments with explicit substitutions may be needed in order to

preserve the desired properties of the system (Kamareddine, 1996).

2. In the Grundlagen (Aut-QE), we need Π-reduction in cases such as:

(N )(λxV )M : (N )(ΠxV )T → [N/x]T (typing plus reduction).

• This is not convincing: a PTS can do this without Π-reduction.

• Every Π-reduction needed to validate the Grundlagen is of this kind.

7 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



8. The weak correctness - Considerations

• Considering extended applicability for a PTS, weak correctness

requires just the validity of [N/x]T instead of the validity of (ΠxV )T .

1. The next example allows to compare these two forms of correctness:

given N : V : S and M : T , take the term (V )(λaS)(N )(λxa)M .

• This term is weakly correct (∆Λ) but not strongly correct (PTS)

because [V/a](N )(λxa)M is valid, but (λaS)(N )(λxa)M is not.

2. A strongly correct term is weakly correct as well; conversely, a weakly

correct term becomes strongly correct if reduced (de Bruijn, 1987).

• The test for weak correctness is easily implemented with de Bruijn’s

validation machines (ibid.), i.e., state automata asserting correctness.

3. A straightforward translation of the Grundlagen is valid in CC

(Brown, 2011; Guidi, 2015), so the Grundlagen is strongly correct.

8 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



Thank you

9 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



9. De Bruijn’s validation machine for ∆Λ - Overview

• Testing correctness with a greedy approach, we may need to compute

the same reduct more than once, as the next example clearly shows.

• Take the term (N2)(N1)(N0)(λx0V0)(λx1V1)(λx2V2)M . The redex

(0) must be reduced when validating both applications (1) and (2).

• De Bruijn introduces a lazy algorithm that uses an argument stack.

The original rules for ∆Λ follow. Warning: they test weak correctness.

1. 〈R , ǫ, ⋆ 〉 (final state)

2. 〈R ,W, typ[x] 〉 implies 〈R ,W, x 〉

3. 〈R , ǫ, N 〉 and 〈R ,W(N ), B 〉 implies 〈R ,W, (N )B 〉

4. 〈R , ǫ, V 〉 and 〈R(♭xV ) , ǫ, B 〉 implies 〈R , ǫ, (♭xV )B 〉

5. 〈R , ǫ, V 〉 and 〈R(N )(♭xV ) ,W, B 〉 implies 〈R ,W(N ), (♭xV )B 〉

if R ⊢ typ[N ] =β V . typ[N ] is the syntax-oriented inf. type of N .
10 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi



10. De Bruijn’s validation machine for ∆Λ - Considerations

1. The state 〈R ,W, B 〉 of the machine follows de Bruijn’s original

terminology: the “red part”, the “white part”, and the “blue part”.

• If the machine 〈 ǫ , ǫ, B 〉 reaches the final state, the term B is correct.

• De Bruijn adds the “yellow part” for a stack of trusted arguments.

• Be Bruijn does not use the terminology of machines. In particular,

closures are not considered and α-conversion is assumed when needed.

2. These ideas might lead to design a lazy validation/type-checking

algorithm for CIC, and to an implemented validation machine.

• A bidirectional validation algorithm for CIC (i.e., matita) would

employ a register holding the expected type of B. Which color? :-)

3. We shall design and implement a validation machine for λδ-3 in

helena, by which we expect the Grundlagen to validate faster.

11 Considerations on Automath in Light of the Grundlagen Ferruccio Guidi


