
The Formal System λδ and the “Three Problems”

Ferruccio Guidi

University of Bologna, Italy

ferruccio.guidi@unibo.it

June 25, 2014

1. Overview

‚ λδ is a typed λ-calculus inspired by Λ8 (van Benthem Jutting, 1984).

‚ λδ is intended to underlie foundations of Mathematics requiring a

theory of expressions, e.g. MTT (Maietti, 2009) and its predecessors.

‚ λδ is developed as a machine-checked digital specification, that isn’t

the formal counterpart of some previously published informal material.

‚ λδ comes in two versions so far: (1) formalized in Coq 7, published in

2008; (2) formalized in Matita (current version), under development.

‚ Following Automath, the ”three problems” are: confluence (Church-

Rosser), strong normalization, and preservation (subject reduction).

‚ The “problems” are solved for λδ version 1; our aim is to discuss

these “problems” for λδ version 2, where more terms are typable.

‚ The “problems” are solved for Λ8 as well, but λδ is more complex!

1 The Formal System λδ and the “Three Problems” Ferruccio Guidi

2. Terms and redexes

‚ Terms: ‹i (sort), #i (reference), λW.T (typed abstraction), δW.T

(abbreviation), @V.T (application), and c©V.T (type annotation).

‚ By @V.T we mean “pT V q” and by c©V.T we mean “pT : V q” .

By δW.T we mean “let #0 be W in T ” (explicit/delaied substitution).

‚ Sorts are numbered from 0, References are by index (starting at 0),

‚ dÒe is the term relocating function (lift of depth d and height e).

‚ Envs: ‹ (empty), L.λW (typed declaration), and L.δW (definition).

‚ dÓe is the env slicing function (drop of depth d and height e).

dÓeL removes e entries after the fist d entries of L, relocating them.

‚ Redexes: @V.λW.T
β
Ñ δ p c©W.V q .T ‚ δ0Ò

1 V.T
ζ

Ñ T ‚ c©V.T ǫÑ T

@V.δW.T θÑ δW.@p0Ò
1 V q.T ‚ L $ #i δÑ p0Ò

i`1W q if 0Ó
iL “ K.δW

‚ In λδ version 1, the β-reductum is simpler: @V.λW.T
β
Ñ δV .T .

2 The Formal System λδ and the “Three Problems” Ferruccio Guidi

3. Context Sensitive Reduction

‚ As opposed to λδ version 1, we start from L $ T1 ñ T2 meaning

that T1 produces T2 by one step of parallel reduction in the env L.

L $ W1 ñ W2 L.δ{λW1 $ T1 ñ T2

L $ δ{λW1.T1 ñ δ{λW2.T2

0Ó
iL “ K.δW1 K $ W1 ñ W2

L $ #i ñ 0Ò
i`1W2

δ

‚ The env allows full parallelism in δ since each #i can be expanded

with a different reduct of W1. Compare with the “envless” version:

W1 ñ W2 T1 ñ T2

δW1.T1 ñ δW2.rW2 {#0sT2

δ with substitution (λδ version 1)

‚ With this approach, reduction correctly commutes with subclosure.

L $ ‹{#i ñ ‹{#i

L $ V1 ñ V2 L $ T1 ñ T2

L $ c©{@V1.T1 ñ c©{@V2.T2

L $ T1 ñ T2

L $ δW.0Ò
1 T1 ñ T2

ζ
L $ T1 ñ T2

L $ c©V.T1 ñ T2

ǫ

L $ V1{W1 ñ V2{W2 L.λW1 $ T1 ñ T2

L $ @V1.λW1.T1 ñ δp c©W2.V2q.T2

β
L $ V1{W1 ñ V2{W2 L.δW1 $ T1 ñ T2

L $ @V1.δW1.T1 ñ δW2.@p0Ò
1 V2q.T2

θ

3 The Formal System λδ and the “Three Problems” Ferruccio Guidi

4. Pointwise Reduction, Confluence, Refinement

‚ Reduction on terms induces a reduction on envs by which entries are

reduced in parallel. One step is denoted by: L1 ñ L2

‹ ñ ‹

K1 ñ K2 K1 $ W1 ñ W2

K1.δ{λW1 ñ K2.δ{λW2

‚ Confluence of reduction is easily achieved via “strip” lemma and

“diamond” property. This must be proved in the general form:

L0 $ T0 ñ T1 L0 $ T0 ñ T2 L0 ñ L1 L0 ñ L2

DT. L1 $ T1 ñ T L2 $ T2 ñ T
diamond

‚ The proof is by induction on the subclosures of xL0, T0y (next slide).

‚ In the β-cases, we must know that reduction is respected by the

“refinement”: L1 9Ď L2 and L2 $ T1 ñ T2 yields L1 $ T1 ñ T2.

L 9Ď ‹

K1
9Ď K2

K1.δ{λW 9Ď K2.δ{λW

K1
9Ď K2

K1.δp c©W.V q 9Ď K2.λW

4 The Formal System λδ and the “Three Problems” Ferruccio Guidi

5. The Order on Subclosures

‚ When proof by structural induction fails, proof by induction on the

relation “being a subterm” provides for a good alternative in general.

‚ In λδ version 2 we need the stronger relation of “being a subclosure”.

One step of this relation is denoted by xL1, T1y Ą xL2, T2y:

1. xL, δ{λ{ c©{@V.T y Ą xL, V y ‚ xL, c©{@V.T y Ą xL, T y ‚ xL, δ{λW.T y Ą xL.δ{λW, T y

2 xK.δ{λW,#0y Ą xK,W y ‚ xL, 0Ò
e`1 T y Ą x0Ó

e`1L, T y (depth 0 is crucial here)

‚ Reduction and the order on subclosures commute as follows.

The pointwise reduction is needed when L1 “ K.λV1 and T1 “ #0.

xL1, T1y Ą xK,V1y K $ V1 ñ V2

DL2, T2. L1 ñ L2 L1{L2 $ T1 ñ T2 xL2, T2y Ą xK,V2y

‚ Pointwise reduction and the order on subclosures commute as follows.

xL1, T1y Ą xK1, V y K1 ñ K2

DL2, T2. L1 ñ L2 L1 $ T1 ñ T2 xL2, T2y Ą xK2, V y

5 The Formal System λδ and the “Three Problems” Ferruccio Guidi

6. Typing

‚ In λδ version 1, we start from L $ T :h U meaning that U is a type

of T in the env L for the “sort hierarchy” h: a parameter of the calculus.

‚ h : N Ñ N satisfies the “strict monotonicity” condition: i ă hpiq .

‚ The rules for the type judgment are: (note the generic term V in

place of a sort in 2 and 3, note the λ-typing in 3)

K $ ‹i :h ‹hpiq
1

0Ó
iL “ K.δ{λW K $ W :h V

L $ #i :h 0Ò
i`1 pV {W q

2
K $ W :h V K.δ{λW $ T :h U

K $ δ{ λW.T :h δ{ λW.U
3

L $ T :h U

L $ c©U.T :h U
4

L $ T :h U1 L $ U1 ô˚ U2 L $ U2 :h T2

L $ T :h U2

5

‚ The rule for application is too week, in λδ version 2 we want 6 and 7:

L $ V :h W L $ T :h λW.U

L $ @V.T :h @V.λW.U
PTS-style (λδ version 1)

L $ V :h W L $ λW.T :h λW.U

L $ @V.λW.T :h @V.λW.U
6

L $ T :h U L $ @V.U :h W

L $ @V.T :h @V.U
7

6 The Formal System λδ and the “Three Problems” Ferruccio Guidi

7. Meaning of λ-Typing and @-Typing

‚ Let L $ T :h U :h S be L $ T :h U and L $ U :h S. By λ-typing

(3) L.λW $ T :h U :h S implies L $ λW.T :h λW.U :h λW.S.

‚ λW.T is a function , λW.U is function space , λW.S is a collection of

function spaces with common domain W and codomains in S.

‚ The implicit function is legal: L $ #i :h λW.U :h λW.S since by the

“start” rule (2), the kind (i.e. type of type) of #i may differ from a sort.

‚ The function (implicit or not) may receive an argument (even by the

PTS-style “application” rule): L $ @V.#i :h @V.λW.U :h @V.λW.S.

‚ The implicit space is legal: L $ #i :h #j :h λW.S and the function

may be applied by @-typing (7) : L $ @V.#i :h @V.#j :h @V.λW.S.

‚ If we reject @-typing, we can still η-expand the function space #j:

L $ #i :h λW.@p#0q.#pj ` 1q :h λW.S (PTS: η-conversion with Π).

7 The Formal System λδ and the “Three Problems” Ferruccio Guidi

8. Preservation Analyzed

‚ The “preservation of type” (subject reduction) is stated as follows:

L $ T1 :h U and L $ T1 ñ T2 yield L $ T2 :h U .

‚ Usual proof: by induction on L $ T1 ñ T2 inverting L $ T1 :h U .

The inversion lemma for @ involves the “iterated type” judgment:

L $ @V.T :h X

DW,Y, U. L $ V :h W L $ T :h Y :˚h λW.U L $ @V.Y ô˚ X
inversion for @

‚ Type is modulo conversion: a conversion (e.g. a multistep reduction)

is allowed at each step of the type chain L $ Y :h . . . :h λW.U .

‚ So a mutual recursion emerges between single step preservation

and multiple step preservation at a higher level in the type hierarchy.

‚ Unfortunately this recursion involves other participants as well.

‚ We also need simultaneous induction on four axes: subclosures,

computation’s length (terms/envs), degree (level in the type hierarchy).
8 The Formal System λδ and the “Three Problems” Ferruccio Guidi

9. Preservation Analyzed Farther

‚ Proving preservation splits in two: (1) which are the participants to

the mutual recursion? (2) is the simultaneous induction well founded?

‚ (1) was solved in 5 months. (2) was solved two days ago after 15

months. In the literature (2) is the “big tree” theorem (solved for Λ8).

‚ The “big tree” of a closure xL1, T1y comprises the closures xL2, T2y

reachable from xL1, T1y following the four axes in any way.

‚ Subclosures are finite, as well as finite-length computations on terms.

However, we can avoid the use of length by observing the following:

‚ xL1, T1y is typed so the computations from T1 are finite (strong

normalization holds). Therefore we use the axis of reducts instead.

‚ Contrary to CIC and MTT, the pointwise computations from L1 (n.a.

in Λ8) are finite only for the entries of L1 referred by T1. See Rule (2).

9 The Formal System λδ and the “Three Problems” Ferruccio Guidi

10. Static Type Assignment

‚ Important: if L $ T :h U then there exists U0 such that L $ T :h U0

is proved without the “conversion” Rule (5) (solved for version 1).

‚ U0 is the “canonical” or “static” type of T . This property holds in a

PTS with delayed Π-reduction (Kamareddine, Bloo, Nederpelt, 1999).

‚ The static type assignment L $ T ‚h U is defined by:

L $ ‹i ‚h ‹hpiq

L $ T ‚h U

L $ @V.T ‚h @V.U

L $ T ‚h U

L $ c©V.T ‚h U

0Ó
i L “ K.δ{λW K $ W ‚h V

L $ #i ‚h 0Ò
i`1 V {W

L.δ{λW $ T ‚h U

L $ δ{λW.T ‚h δ{λW.U

‚ xL, T y has a static type iff the head variable reference of T is

hereditarily bound in L. An equivalent condition is on the next slide.

10 The Formal System λδ and the “Three Problems” Ferruccio Guidi

11. Degree Assignment

‚ Contrary to Λ8, by Rule (1), λδ has infinite type levels . The degree

must be assigned in a parametric reference system, termed g hereafter.

‚ g : N Ñ N sets the degree of sorts. It satisfies the “compatibility”

condition: gphpiqq “ gpiq ´ 1 . It is formalized as functional relation.

‚ The rules for assigning degree l to xL, T y (write L $ T ‚h,g l) are:

gpiq “ l

L $ ‹i ‚h,g l

0Ó
iL “ K.δ{λW K $ W ‚h,g l

L $ #i ‚h,g l{pl ` 1q

L.δ{λW $ T ‚h,g l

L $ δ{λW.T ‚h,g l

L $ T ‚h,g l

L $ c©{@V.T ‚h,g l

‚ Given L $ T ‚h U with L $ T ‚h,g l ą 0, the transition from

xL, T y to xL,Uy is a “step” along the axis of “static typing”.

‚ xL, T y has a degree for some g iff it has a static type.

‚ If L $ T ‚h U and L $ T ‚h,g l, then L $ U ‚h,g pl ´ 1q.

11 The Formal System λδ and the “Three Problems” Ferruccio Guidi

12. Stratified Validity

‚ Type is defined modulo conversion: preservation is more difficult.

Validity (having or being a type) is not: preservation is less difficult.

‚ How are these linked? T is valid when it has a type, vice versa the

types or a valid T are the valid U ’s convertible to the static type of T .

‚ Stratified validity of xL, T y (write L $ T !h,g) is defined as follows:

L $ ‹i !h,g

0Ó
i L “ K.δ{λW K $ W !h,g

L $ #i !h,g

L $ W !h,g L.δ{λW $ T !h,g

L $ δ{λW.T !h,g

L $ V !h,g L $ T !h,g L $ T ‚h,g pl ` 1q L $ T ‚h U L $ U ô˚ V

L $ c©V.T !h,g

L $ V !h,g, L $ T !h,g, L $ V ‚h,g pl ` 1q, L $ V ‚h W, L $ W ñ˚ W0, L $ T ‚˚ñ˚
h,g λW0.U

L $ @V.T !h,g

‚ Decomposed extended computation (write L $ T1 ‚˚ñ˚
h,g T2) is:

DT, l1, l2. l2 ď l1, L $ T1 ‚h,g l1, L $ T1 ‚
˚pl2q
h T, L $ T ñ˚ T2.

12 The Formal System λδ and the “Three Problems” Ferruccio Guidi

13. The Mutual Recursion

‚ Preservation of validity needs a mutual recursion with 4 participants:

1 L1 $ T1 !h,g and L1 $ T1 ñ T2 and L1 ñ L2 implies L2 $ T2 !h,g;

2 L1 $ T1 !h,g and L1 $ T1 ‚h,g l and L1 $ T1 ñ T2 and L1 ñ L2 implies L2 $ T2 ‚h,g l;

3 L $ T1 !h,g and l2 ď l1 and L $ T1 ‚h,g l1 and L $ T1 ‚
˚pl2q
h T2 implies L $ T2 !h,g;

4 if L1 $ T1 !h,g and l2 ď l1 and L1 $ T1 ‚h,g l1 and L1 $ T1 ‚
˚pl2q
h U1 and L1 $ T1 ñ T2 and

L1 ñ L2, then there exists U2 such that L2 $ T2 ‚
˚pl2q
h U2 and L2 $ U1 ô˚ U2.

‚ Every Participant depends on all participants (including itself),

except for Participant 2 that does not depend on Participant 4.

‚ Suitable “refinements” appear in the β-cases of Participants 1, 2, 4.

‚ Given the characterization of typing through validity (previous slide),

preservation of type follows immediately from Participants 1 and 4.

‚ Important properties not depending on the mutual recursion:

valid terms have a static type and are strongly normalizing.
13 The Formal System λδ and the “Three Problems” Ferruccio Guidi

14. The Simultaneous Induction: Normal Forms

‚ Axis of subclosures: xL, T y is in n.f. when L and T are atomic.

‚ Axis of static types: xL, T y is in normal form when L $ T ‚h,g 0.

‚ Axis of term reducts: xL, T1y is in normal form when L $ T1 ñ T2

implies T1 “ T2. Reduction steps are too short for single-step cycles.

‚ Axis of env reducts: xL1, T y is in normal form when L1 ñ L2

implies L1 “ L2 considering just the entries referred by T .

‚ To this end we introduce lazy equivalence (write L1 d”U L2):

L1 d”U L2 iff |L1| “ |L2| and for every K1, K2,W1,W2, i, d ď i and @T. iÒ
1 T ‰ U and

0Ó
i L1 “ K1.δ{λW1 and 0Ó

i L2 “ K2.δ{λW2 imply W1 “ W2 and K1 0”W1
K2.

‚ |L| counts the entries of L and the “depth” d allows to prove:

L1 d”W L2 and L1.δ{λW pd`1q ”
T
L2.δ{λW imply L1 d”δ{λW.U L2.

‚ So, last axis: xL1, T y is in n.f. when L1 ñ L2 implies L1 0”T L2.

14 The Formal System λδ and the “Three Problems” Ferruccio Guidi

15. The Simultaneous Induction: Extension

‚ Leading idea: if we could rearrange a computation t in the “big tree”

grouping the steps along each axis, we could prove that t is finite.

‚ Unfortunately: static type assignment commutes neither with

reduction (participant 4), nor with the order on subclosures.

‚ Reduction and static type assignment are not separable in “big trees”.

We generalize both by extending reduction with “type inference” steps.

‚ Extended redexes: L $ ‹i sÑ ‹hpiq if gpiq ą 0 ‚ c©V.T tÑ V

L $ #i lÑ p0Ò
i`1W q if 0Ó

iL “ K.λW (the “δ-redex for λ”).

‚ Hereafter the relations L $ T1 ñh,g T2 and L1 ñh,g L2 denote one

step of extended reduction on terms and environments respectively.

‚ No single-step cycles: unchanged halting conditions on these axes.

‚ No confluence in general (ǫ-step vs. t-step). May hold on valid terms.

15 The Formal System λδ and the “Three Problems” Ferruccio Guidi

16. The Simultaneous Induction: Decomposition

‚ Note: we can prove that L $ T1 ‚˚ñ˚
h,g T2 implies L $ T1 ñ˚

h,g T2.

‚ Extended reduction, subclosures, and lazy equivalence commute thus:

xL, T1y Ą xK,V1y; K $ V1 ñh,g V2

DT2. L $ T1 ñh,g T2; xL, T2y Ą xK,V2y
pAq

L1 ñh,g L2; L2 $ T1 ñh,g T2

L1 $ T1 ñ˚
h,g T2

pBq

L1 0”T1 L2; L2 $ T1 ñh,g T2

L1 $ T1 ñh,g T2

pCq
L1 ñh,g L2; xL2, T2y Ą xK2, V y

DK1, T. L1 $ T2 ñh,g T ; xL1, T y Ą xK1, V y; K1 ñh,g K2

pDq

L1 0”T L2; xL2, T y Ą xK2, V y

DK1. xL1, T y Ą xK1, V y; K1 0”V K2

pEq
L1 d”T L2; L2 ñh,g K2

DK1. L1 ñh,g K1; K1 d”T K2

pF q

‚ Rule pAq shows the gain of extended reduction over ordinary one

(compare with slide 5). We did not try Rule pDq for ordinary reduction.

‚ The proof of rule pF q is hard and requires a dedicated apparatus.

‚ Given a computation t from xL1, T1y to xL2, T2y, there are L0, L, T

s.t. L1 $ T1 ñ˚
h,g T ; xL1, T y Ą

˚ xL, T2y; L ñ˚
h,g L0; L0 0”T2

L2

16 The Formal System λδ and the “Three Problems” Ferruccio Guidi

17. Atomic Arity Assignment

‚ Strong normalization must be proved for extended reduction. We

can adapt the proof working in λδ version 1 for ordinary reduction.

‚ We use Tait’s candidates of reducibility (CR) containing closures.

‚ An “arity” encodes the structure of a CR: a “simple” type in this

case. L $ T ... A means that xL, T y may belong to the CR with arity A.

L $ ‹i ... ‹

0Ó
iL “ K.δ{λW K $ W

... B

L $ #i ... B

L $ W
... B L.δW $ T

... A

L $ δW.T ... A

L $ W
... B L.λW $ T

... A

L $ λW.T ... B Ñ A

L $ V
... B L $ T

... B Ñ A

L $ @V.T ... A

L $ V
... A L $ T

... A

L $ c©V.T ... A

‚ Important: L $ T !h,g implies L $ T ... A for some A. Valid terms

are simply typed (replacing type annotations with their arities).

‚ L $ T ... A implies L $ T ‚h U and L $ U ... A for some U .

If we take an extended reduction step, we remain in the same CR.

17 The Formal System λδ and the “Three Problems” Ferruccio Guidi

18. Some Points on Strong Normalization

‚ Idea of the proof. Given L $ T ... A we construct the CR JAKh,g by

induction on A, and prove xL, T y P JAKh,g by induction on L $ T ... A.

‚ The statement requires a suitable “refinement” relation to handle the

β-cases, and a generalization of the relocating functions: dÒe and dÓe .

‚ A CR must satisfy saturation conditions S0 to S7. S1 is Girard’s CR1,

S2 is Tait’s iii, S0 is xdÓeL, T y P JAKh,g implies xL, dÒe T y P JAKh,g.

‚ S3 (Tait’s ii) is: xL,@V1. . . .@Vn.δp c©W.V q.T y P JAKh,g implies

xL,@V1. . . .@Vn.@V.λW.T y P JAKh,g. Proving S3 for J‹Kh,g requires:

‚ L $ @V.λW.T ñ˚
h,g U (head) implies L $ δp c©W.V q.T ñ˚

h,g U .

With extended reduction, T “ #0, U “ 0Ò
1W is possible on the l.h.s.

‚ To handle this case on the r.h.s, we need W in the β-reductum

(contrary to λδ version 1), and we need the t-reduction step.

18 The Formal System λδ and the “Three Problems” Ferruccio Guidi

Thank you

19 The Formal System λδ and the “Three Problems” Ferruccio Guidi

