A Validator for the Formal System λδ Ferruccio Guidi University of Bologna, Italy fguidi@cs.unibo.it

February 8, 2010

Overview

- The formal system $\lambda\delta$ is a typed λ -calculus under development in the context of the HELM project at the University of Bologna.
- As an expected feature, $\lambda\delta$ should serve as a modular framework flexible enough to encode Mathematics in a realistic manner.
- To verify this feature, we encoded a non-trivial mathematical theory into $\lambda\delta$ by implementing a computer-assisted translation.
- Given that the resulting λ -terms must be valid against $\lambda\delta$'s type system, we were naturally led to implement a validator as well.
- An XML representation of the λ -terms can be generated following HELM approach to long-term storage of mathematical contents.
- Our validator is implemented in the Caml programming language for a better integration with the rest of the HELM software.

In this talk

- We present the variant of $\lambda\delta$ recognized by the validator.
- We discuss the implementation of the validation procedure.
- We present the translation of the theory we encoded into $\lambda\delta$.

$\lambda \delta$ "brg" ("basic, relative, global")

- $\lambda\delta$ is an evolving framework, whose development process will eventually give rise to a family of languages.
- $\lambda\delta$ "brg" is very close to the official variant in print on ToCL.
- No applications, type casts and level indicators in environments.
- The environment is split and has a component accessed by name.
- We added the "pure" type assignment rule for applications.

The abstract syntax of $\lambda \delta$ "brg"

Natural number: i,l,x (corresponding data-type: \mathbb{N}) Term: $T,U,V,W ::= *l \mid \#i \mid \$x \mid \langle U \rangle . T \mid \langle V \rangle . T \mid \lambda W.T \mid \delta V.T \mid \chi . T$ Local environment: $E ::= * \mid E.\lambda W \mid E.\delta V \mid E.\chi$ Global environment: $\mathcal{G} ::= * \mid \mathcal{G}.\lambda_x W \mid \mathcal{G}.\delta_x V$ **The reduction steps of** $\lambda \delta$ "brg" $\mathcal{G}, E \vdash \langle V \rangle . \lambda W.T \rightarrow_{\beta} \delta V.T$ $\mathcal{G}, E_1.\delta V.E_2 \vdash \#i \rightarrow_{\delta} \uparrow^{i+1} V$ if $i = |E_2| \mid \mathcal{G}_1.\delta_x V.\mathcal{G}_2, E \vdash \$x \rightarrow_{\delta} V$ if $x \notin \mathcal{G}_2$

 $\mathcal{G}, E \vdash \delta V. \uparrow^1 T \to_{\mathcal{C}} T$

 \uparrow^i is the "relocation function". $|E_2|$ is the number of binders in E_2 . $x \notin \mathcal{G}_2$ means that there is no global binder named x in \mathcal{G}_2 .

 $\mathcal{G}, E \vdash (V_1).\delta V_2.T \rightarrow_{\mathcal{V}} \delta V_2.(\uparrow^1 V_1).T \qquad \left| \mathcal{G}, E \vdash (V_1).\chi.T \rightarrow_{\mathcal{V}} \chi.(\uparrow^1 V_1).T \right|$

 $\mathcal{G}, E \vdash \chi.\uparrow^1 T \to_{\mathcal{C}} T$

The fundamental judgements of $\lambda \delta$ "brg"

- $h : \mathbb{N} \to \mathbb{N}$ is any function satisfying h(l) > l for each l.
- Conversion: $\mathcal{G}, E \vdash U_1 \leftrightarrow^* U_2$ (U_1 and U_2 are convertible).
- Type assignment: $\mathcal{G}, E \vdash_h T : U$ (T has type U).
- Correctness: $\mathrm{wf}_h(\mathcal{G})$ (\mathcal{G} is well formed).

The type assignment rules of $\lambda\delta$ "brg"

$$\frac{\mathcal{G}_{1}, * \vdash_{h} V : W \quad x \notin \mathcal{G}_{2}}{\mathcal{G}_{1}.\delta_{x}V.\mathcal{G}_{2}, E \vdash_{h} \$x : W} \quad g-\det \quad \frac{\mathcal{G}_{1}.* \vdash_{h} W : V \quad x \notin \mathcal{G}_{2}}{\mathcal{G}_{1}.\lambda_{x}W.E_{2}, E \vdash_{h} \$x : W} \quad g-\det \quad \frac{\mathcal{G}_{1}.\lambda_{x}W.E_{2}, E \vdash_{h} \$x : W}{\mathcal{G}_{1}.\lambda_{x}W.E_{2}, E \vdash_{h} \$x : W} \quad decl$$

$$\frac{\mathcal{G}, E_{1} \vdash_{h} V : W \quad i = |E_{2}|}{\mathcal{G}, E_{1}.\delta V.E_{2} \vdash_{h} \#i : \uparrow^{i+1}W} \quad l-\det \quad \frac{\mathcal{G}, E_{1} \vdash_{h} W : V \quad i = |E_{2}|}{\mathcal{G}, E_{1}.\lambda W.E_{2} \vdash_{h} \#i : \uparrow^{i+1}W} \quad l-\det \quad \frac{\mathcal{G}, E_{1}.\lambda W.E_{2} \vdash_{h} \#i : \uparrow^{i+1}W}{\mathcal{G}, E_{1}.\lambda W.E_{2} \vdash_{h} \#i : \uparrow^{i+1}W} \quad decl$$

The type assignment rules of $\lambda \delta$ "brg" (continued)

Highlights of our validation procedure

- Our validation procedure follows the general pattern implemented in many λ -calculus-based proof assistants, like Coq and Matita.
- We have a type checker, a convertibility checker and a domain retrieval function (in other systems this computes a w.h.n.f.).
- 1. The data-types for terms and environments allow to annotate each term and each environment entry with non-logical information.
- 2. The reduction apparatus is based on Krivine machines (KAMs), and the type checker uses them in place of local environments.
- 3. The application of some type inference rules (namely, *purity* and *sort inclusion*) is delegated to the reduction apparatus.
- 4. The reduction apparatus works without relocations (the functions *lift, delift*), in particular we do not need the *unwind* function.

Non-logical information

- Mark: persistent numeric information (line numbers, pointers). This attribute is not used now, but we plan to use it in the future.
- Name: persistent literal information (variables names, sort names) used for presentational purposes. NB Names are non-logical in $\lambda\delta$.
- Apix: transient numeric information used by the reduction apparatus to avoid δ -expansions and remarkably ζ -contractions.
- The persistent information is included in the long-term persistence format of the validated data (to be explained in the following).

Terms and local environments

```
type uri = NUri.uri
type bind = Void
         | Abst of term
                                      (* domain *)
                                      (* body *)
         Abbr of term
and term = Sort of attrs * int (* hierarchy index *)
         | LRef of attrs * int (* position index *)
         | GRef of attrs * uri (* reference *)
         | Cast of attrs * term * term (* type, member *)
         | Appl of attrs * term * term (* argument, function *)
         | Bind of attrs * bind * term (* binder, scope *)
                                       (* bottom *)
type lenv = Null
         | Cons of lenv * lenv * attrs * bind
```

- Our URI scheme is 1d and we use the HELM URI module.
- A local environment entry (**Cons**) has a secondary closure used by the reduction apparatus (set to **Null** when not needed).

Global environment

- The global environment entry (entity) is parametric over term to reuse it with different languages of the $\lambda\delta$ family (we have two now).
- The global environment is a table of entities hashed on their URIs, but is not a cache now. This limitation will be eventually solved.
- The environment must contain valid entities and the incoming entities receive an "*apix*" consisting of their ordinal entry number.
- This information, termed the age, is used like Matita's *height* to prevent useless global δ -expansions during the convertibility checks.

Pseudo-reductions

Local reference typing: $\mathcal{G}, E_1 \cdot \lambda W \cdot E_2 \vdash \#i \to \uparrow^{i+1} W$ if $i = |E_2|$ Global reference typing: $\mathcal{G}_1 \cdot \lambda_x W \cdot \mathcal{G}_2, E \vdash \$x \to W$ if $x \notin \mathcal{G}_2$ Sort inclusion: $\mathcal{G}, E \vdash \lambda W \cdot \ast l \to \ast l$

- The reduction apparatus implements these steps just as part of the type-checking algorithm. These reductions break $\lambda\delta$'s meta-theory.
- Reference typing is enabled in the domain retrieval function to implement the "*pure*" type inference rule, as we will explain.
- Sort inclusion raises $\lambda\delta$'s expressive power from $\lambda \rightarrow$ to λP and is needed to process the examples on which the validator was tested.
- Its implementation follows the Vera system: when the convertibility of two types is checked, sort inclusion is applied to the inferred type when no other step applies to it (some restrictions are needed).

The reduction apparatus

```
type status = {
   delta: bool; (* global delta-expansion *)
   rt: bool; (* reference typing *)
   si: bool (* sort inclusion *)
}
```

- **status** is an aggregate of flags passed to all functions concerned to reduction. These flags enable or disable some reduction steps.
- Only the **si** flag can be set by the user (via a command line option), the other flags are controlled by the reduction functions.
- Both the domain retrieval and the convertibility check require to apply a chain of reduction steps to some given terms. The literature suggests that w.h.n.f.'s are good break points for these chains.
- The main task of the reduction apparatus is to compute w.h.n.f.'s.

Computing the w.h.n.f.

- The w.h.n.f. of a term is computed by a KAM extended to cope with $\lambda\delta$. The term is not stored in a KAM register, but it could.
- We provide access to the KAM environment (get, push) because we want to use it as a reduction and type inference environment. In particular we want our KAM to compute *deep* w.h.n.f.'s.
- The environment can be accessed only if the stack (\mathbf{s}) is empty.

Computing the w.h.n.f. (continued)

- We count the incoming abstraction entries in the **d** register and each incoming abstraction entry receives an "*apix*" with its depth.
- The KAM computes the $\beta \delta v \tau$ -w.h.n.f. of a given term, but it can stop on global δ -redexes by disabling the **delta** flag.
- The KAM stops on references to abstractions (both local and global) only if reference typing is disabled via the **rt** flag.
- When the KAM stops on a reference (both local and global), the "*apix*" of the referred binder is returned (it always exists).
- An error is produced if a reference to a χ binder is encountered, even if the w.h.n.f. exists anyway, but this is not a limitation.
- Our KAM is not parametric over the evaluation strategy and the call-by-need optimization is not implemented at the moment.

Domain retrieval

val xwhd: status -> kam -> term -> kam * term

- (V).T is typable in \mathcal{G} and E if (V) matches a λW_1 retrieved in T, E or \mathcal{G} . Moreover W_1 and the type W_2 of V must be convertible.
- λW_1 must start the w.h.n.f. of the type U of T, or else, if the "pure" rule is in effect, the iterated types of U must be considered.
- This search eventually comes to an end since it involves just a finite number of iterated types of T, which are strongly normalizable.
- The w.h.n.f. of the first iterated type of T that may contain λW_1 , is given by our KAM run on U with **delta** and **rt** enabled.
- Formally, reference typing is similar to δ -expansion so the KAM does not need to perform any relocation when computing it.

The convertibility check

val are_convertible: status -> kam -> term -> kam -> term -> bool
 (* arguments: expected type, inferred type *)

- We can process two terms closed in two environments, given the invariant that they contain the same number of abstractions.
- The check applies to types and is not symmetric if sort inclusion is in effect. The arguments are an expected type and an inferred type.
- The terms are reduced in parallel and compared each time a (deep) w.h.n.f. is reached. The KAMs are run with **delta** and **rt** disabled.
- The α -convertibility check is not attempted before the full convertibility check as in Matita. Moreover the terms must be valid.
- Two sorts are compared by level but the KAM stacks are not compared because a sort after an application is always invalid.

The convertibility check (continued)

- Two local references are compared by "*apix*" (instead of by index) so they need not to be relocated (delifted) before the comparison.
- Two global references to abstractions are compared by "*apix*" (age). This is the same as comparing them by name.
- Two global references to abbreviations are compared by "*apix*". If they differ, the abbreviation with the greatest age is expanded.
- Two abstractions are matched by comparing their domains and then their scopes, after pushing the domains in the respective KAMs.
- Depending on the **si** flag, sort inclusion is attempted as a last resort before asserting that the compared terms are not convertible.
- si is disabled when matching the KAM stacks and the domains of abstractions, otherwise some non-normalizing terms (Ω) are valid.

Sort hierarchy management

type graph = string * (int -> int) (* sort hierarchy *)
val graph_of_string: string -> graph (* graph constructor *)
val string_of_graph: graph -> string (* graph name *)
val apply: graph -> int -> int (* graph look up *)
val set_sorts: string list -> int -> int (* sort registration *)
val get_sort: int -> string (* sort look up *)

- The sort hierarchy parameter (h) has predefined values, denoted by strings, that ensure its strict monotonicity (graph_of_string).
- The recognized values are "Zn" with n > 0, meaning $h(l) \equiv l + n$.
- This parameter is set from the command line and defaults to "Z2".
- The parameter is applied using the function **apply**.
- We can assign names to sorts for presentational purposes (set_sorts, get_sort), which are stored in a hash table.

Computing the canonical type

val type_of: (term -> 'a) -> status -> graph -> kam -> term -> 'a

- This function is better implemented using the CPS paradigm.
- The local environment (the KAM) contains just valid items.
- Every δV is annotated with the inferred type of V before entering the environment, becoming $\delta \langle W \rangle V$, so V is typed only once.

(* m: kam, u: type of the function, w: type of the argument *)
let assert_applicability st m u w = match xwhd st m u with

- mu and u go from xwhd to are_convertible as they are.
- Passing two KAMs to **are_convertible** is crucial here.

Validation

val validate: si:bool -> graph -> entity -> entity

Testing the validator

- We can translate Jutting's formal specification of Landau's "Grundlagen der Analysis" from Aut – QE into $\lambda\delta$ "brg" and we can validate it enabling sort inclusion (maybe not necessary).
- Two steps: we build an intermediate representation where the syntactic shorthand is removed, and we encode this into $\lambda\delta$ "brg".
- The validator implements both steps of the translation as well.
- The intermediate language is a version $\lambda\delta$ still under design.
- The validator has a "multi-kernel" architecture and will be able to validate this version of $\lambda\delta$ (and hopefully others) in the future.

Long-term persistence of the global environment

• We can produce an XML representation of each **entity**.

```
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ENTITY SYSTEM "http://helm.cs.unibo.it/lambda-delta/xml/ld.dtd">
<ENTITY hierarchy="Z2" options="si">
   <ABBR uri="ld:/brg/grundlagen/l/not.ld" name="not" mark="6">
      <Cast>
         <Abst name="a">
           <Sort position="1" name="Prop"/>
         </Abst>
         <Sort position="1" name="Prop"/>
      </Cast>
      <Abst name="a">
         <Sort position="1" name="Prop"/>
      </Abst>
      <Appl>
         <GRef uri="ld:/brg/grundlagen/l/con.ld" name="con"/>
      </Appl>
      <Appl>
         <LRef position="0" name="a"/>
      </Appl>
      <GRef uri="ld:/brg/grundlagen/l/imp.ld" name="imp"/>
   </ABBR>
</ENTITY>
```

Some statistical data

Size of the "Grundlagen"		Performance of the validator		
Language	Int. complexity	Phase	Run time fraction	Run time
Aut - QE	319706	parsing	10%	0.7s
intermediate	754578	translation	23%	1.7s
$\lambda\delta$ "brg"	998232	validation	67%	4.9s

Relocated data				
terms	295202			
int. complexity	1252256			
the relocations are due				
to the "l-decl" t	ype rule			

Reductions					
β	1034626	au	17166		
local δ	494271	global r.t.	0		
global δ	17166	local r.t.	1		
v	2040476	s.i.	904		

The "intrinsic complexity" approximates the number of nodes. The validator was run on a 2×AMD Athlon MP 1800+, 1.53 GHz. The ζ-contractions, avoided by the validator, would be: 3694769.

Thank you