Towards the Unification of Terms, Types and Contexts

Ferruccio Guidi

Department of Computer Science University of Bologna, Italy fguidi@cs.unibo.it

Short presentation of the paper available at http://arxiv.org/abs/cs/0611040

Certified proofs of all presented results are available at http://helm.cs.unibo.it/lambda-delta

Leading conjecture

There is a typed λ-calculus satisfying the standard desired properties, whose terms, types and contexts use the same constructions

The calculus $\lambda \delta$

Terms and types share the same constructions
Every context is also a term
There is an infinite sequence of sorts but they are not universes

The standard desired properties hold
It recalls Church simply typed λ-calculus but has uniformly dependent types

A possible use case

Foundation for predicative type theories like CTT (Martin-Löf), mTT (Maietti \& Sambin)

Sort hierarchy parameter

$g \in G \equiv\{$ next $\in \mathbb{N} \rightarrow \mathbb{N} ;$ next_lt $\in h<\operatorname{next}(h)\}$

Constructions

Sort of index k, variable reference,
Church-style abstraction, abbreviation, application, explicit type cast

Constructors

Terms and types (in prefix notation) Sort $_{k} \quad x \quad \lambda x: V . T \quad \delta x \leftarrow V . T \quad(V) . T \quad\langle V\rangle . T$

Contexts (in prefix notation)
Sort $_{k} \quad \lambda x: V . C \quad \delta x \leftarrow V . C \quad(V) . C \quad\langle V\rangle . C$
Why these constructors?
The sequence of sorts allows to type all legal terms

Abbreviations allow subject reduction Casts reduce type checking to type inference

Strict substitution

$\left[x^{+} \leftarrow W\right] T$ replaces one or more occurrences of x in T with W (is undefined if $x \notin \mathrm{FV}(T)$)

Reduction steps (no critical pairs)

$$
\begin{gathered}
\beta \text {-contraction } \\
(W) \cdot \lambda x: V \cdot T \quad \rightarrow_{\beta} \quad \delta x \leftarrow W \cdot T \\
\delta x \leftarrow V \cdot T \quad \rightarrow_{\delta} \quad \delta x \leftarrow V \cdot\left[x^{+} \leftarrow V\right] T
\end{gathered}
$$

ζ-contraction

$$
\delta x \leftarrow V \cdot T \quad \rightarrow \zeta \quad T \quad \text { if } x \notin \mathrm{FV}(T)
$$

(not allowed if the redex is a context)
τ-contraction

$$
\langle V\rangle . T \quad \rightarrow_{\tau} \quad T
$$

v-conversion

$$
(W) . \delta x \leftarrow V \cdot T \quad \rightarrow v \quad \delta x \leftarrow V .(W) . T
$$

contextual δ-expansion

$$
D . \delta x \leftarrow V . D^{\prime} \vdash \quad T \quad \rightarrow_{\delta} \quad\left[x^{+} \leftarrow V\right] T
$$

Parallel reduction and conversion

$$
C \vdash T_{1} \Rightarrow^{*} T_{2} \text { and } C \vdash T_{1} \Leftrightarrow^{*} T_{2}
$$

Type assignment

$$
\begin{aligned}
& C \vdash_{g} \text { Sort }_{h}: \text { Sort }_{\text {next }}^{g}(h) \\
& \frac{C=D . \delta x \leftarrow V . D^{\prime} \quad D \vdash_{g} V: T}{C \vdash_{g} x: T} \operatorname{def} \\
& \frac{C=D \cdot \lambda x: V \cdot D^{\prime} \quad D \vdash_{g} V: T}{C \vdash_{g} x: V} \mathrm{decl} \\
& \frac{C \vdash_{g} V: T \quad C . \delta x \leftarrow V \vdash_{g} T_{1}: T_{2}}{C \vdash_{g} \delta x \leftarrow V . T_{1}: \delta x \leftarrow V . T_{2}} \mathrm{abbr} \\
& \frac{C \vdash_{g} V: T \quad C \cdot \lambda x: V \vdash_{g} T_{1}: T_{2}}{C \vdash_{g} \lambda x: V . T_{1}: \lambda x: V . T_{2}} \text { asst } \\
& \frac{C \vdash_{g} W: V \quad C \vdash_{g} U: \lambda x: V \cdot T}{C \vdash_{g}(W) \cdot U:(W) \cdot \lambda x: V \cdot T} \mathrm{appl} \\
& \frac{C \vdash_{g} T_{1}: T_{2} \quad C \vdash_{g} T_{2}: T_{3}}{C \vdash_{g}\left\langle T_{2}\right\rangle . T_{1}:\left\langle T_{3}\right\rangle \cdot T_{2}} \text { cast } \\
& \frac{C \vdash_{g} T_{2}: T \quad C \vdash_{g} V: T_{1} \quad C \vdash T_{1} \Leftrightarrow^{*} T_{2}}{C \vdash_{g} V: T_{2}} \mathrm{conv}
\end{aligned}
$$

Main certified properties

Reduction is confluent

If $C \vdash T_{0} \Rightarrow{ }^{*} T_{1}$ and $C \vdash T_{0} \Rightarrow^{*} T_{2}$, there exists T such that $C \vdash T_{1} \Rightarrow^{*} T$ and $C \vdash T_{2} \Rightarrow^{*} T$

Types are typable

If $C \vdash_{g} T_{1}: T_{2}$, there exists T_{3} such that $C \vdash_{g} T_{2}: T_{3}$
The types of a term are convertible
If $C \vdash_{g} T: T_{1}$ and $C \vdash_{g} T: T_{2}$ then $C \vdash T_{1} \Leftrightarrow^{*} T_{2}$
The λ-abstraction is predicative If $C \vdash_{g} \lambda x: V \cdot T: U$ then $C \nvdash U \Leftrightarrow^{*} V$

The λ-abstraction is not absorbent $\left(x \notin \mathrm{FV}\left(U_{2}\right)\right)$ If $C \vdash_{g} \lambda x: V \cdot T: U_{1}$ and $C \cdot \lambda x: V \vdash_{g} T: U_{2}$ then $C \nvdash U_{1} \Leftrightarrow{ }^{*} U_{2}$

The terms are not typed with themselves
If $C \vdash_{g} T: U$ then $C \nvdash U \Leftrightarrow^{*} T$
Reduction preserves the type
If $C \vdash T \Rightarrow{ }^{*} T_{1}$ and $C \vdash_{g} T: T_{2}$ then $C \vdash_{g} T_{1}: T_{2}$
The typable terms are strongly normalisable
If $C \vdash_{g} T: U$ then $C \vdash \operatorname{sn}(T)$
Type inference is decidable
$C \nvdash_{g} T_{1}: T_{2}$ or there exists T_{2} such that $C \vdash_{g} T_{1}: T_{2}$
Type checking reduces to type inference $C \vdash_{g} T: V$ iff there exists U such that $C \vdash_{g}\langle V\rangle . T: U$

