
Lambda Types

on the Lambda Calculus with Abbreviations

Ferruccio Guidi

Department of Computer Science

University of Bologna

Abstract for an informal presentation at CIE 2007

λδ [2] is a typed λ-calculus that pursues the reuse of the term constructions both at
the level of types and at the level of contexts, while enjoying the most common meta-
theoretical properties [1]. Notice that the distinction we are making here between
terms and types is borrowed from the simply typed λ-calculus λ→. The development
of λδ is intended as the first step towards the verification of the following conjecture:
the adoption of a single set of constructions for terms, types, and contexts (i.e. the
“contexts as types as terms” paradigm) is compatible with the presence of a desirable
meta-theory. λδ features the term constructions of Church λ→ plus sorts, abbrevia-
tions and type casts. Sorts are necessary to build closed terms, abbreviations (i.e. let
expressions) are essential in the proofs of some meta-theoretical properties when the
“types as terms” paradigm is adopted and are practically unavoidable in mathemat-
ics and computer science, while type casts play an important role in connection to
canonical typing and are borrowed from realistic type checker implementations. λδ
realizes the “types as terms” paradigm in full and features an uniform typing policy
for all binders, i.e. for each binder [, a [-abstraction is typed with a [-abstraction by
means of a uniform rule. As a consequence λδ is a λ-typed λ-calculus but it differs
from the Automath-related calculi [4] in that they do not provide for an abbrevia-
tion construction at the level of terms. Moreover λδ features a type hierarchy with
a potentially infinite number of levels both above and below any reference point. λδ
realizes the “contexts as terms” paradigm only partially since a context is always a
special case of a term but the converse is not true in general (the author is studying
an extension of λδ meant to solve this problem). The reduction steps of λδ include
(but are not limited to) β-contraction, δ-expansion and ζ-contraction. On the other
hand η-contraction is not included. The meta-theory of λδ includes the meta-theory
of Church λ→ (i.e. confluence of reduction, subject reduction, strong normalisation
and decidability of type inference) and, in addition, the correctness of types and the
uniqueness of types can also be proved. λδ shares with Church λ→ the subset of
typable terms but in the “propositions as types” perspective it can encode the im-
plicative fragment of predicative logic without quantifiers because dependent types are
allowed. Moreover the λ-abstraction is predicative in the sense that C ` λx:V.T : V
never holds so the calculus can serve as a formal specification language for the type
theories, like mTT [3], that require to be expressed in a predicative foundation.

1



References

[1] H.P. Barendregt. Lambda Calculi with Types. Osborne Handbooks of Logic in

Computer Science, 2:117–309, 1993.

[2] F. Guidi. Lambda-Types on the Lambda-Calculus with Abbreviations, Nov 2006.
http://arxiv.org/abs/cs/0611040.

[3] M.E. Maietti and G. Sambin. Towards a minimalist foundation for constructive
mathematics. In L. Crosilla and P. Schuster, editors, From Sets and Types to

Topology and Analysis: Practicable Foundations for Constructive Mathematics.
Oxford University Press, Oxford, 2005. Forthcoming.

[4] D.T. van Daalen. The language theory of Automath. Ph.d. thesis, Eindhoven
University of technology, 1980.

2


